Linear Algebra

[KOMS119602] - 2022/2023

13.2 - Eigenvector

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 14 (December 2022)

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of eigenvalues and eigenvectors;
- 2. find the eigenvalues of a matrix;
- 3. find the eigenvectors of a matrix;
- 4. find the bases of eigenspace of a matrix.

Motivating example

Part 1: Eigenvectors & Eigenvalues

What are eigenvectors & eigenvalues?

Definition

Let A be an $n \times n$ matrix, then a nonzero vector \mathbf{x} in \mathbb{R}^n is called an eigenvector of A (or of the matrix operator T_A) if $A\mathbf{x}$ is a scalar multiple of \mathbf{x} ; that is:

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar $\lambda \in \mathbb{R}$.

 λ is called an eigenvalue of A (or of T_A), and \mathbf{x} is said eigenvector corresponding to λ .

Geometric interpretation

The eigenvector **x** represents:

the column vector in which multiplying it by a square matrix A yields a vector $\lambda \mathbf{x}$ for some $\lambda \in \mathbb{R}$, i.e.

a vector that is a multiplication of \mathbf{x}

(same direction as \mathbf{x} but with different magnitude).

Geometric interpretation

Depending on the sign and magnitude of the eigenvalue λ corresponding to \mathbf{x} , the operation $A\mathbf{x} = \lambda\mathbf{x}$ compresses or stretches \mathbf{x} by a factor of λ .

Example

Given
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
. The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of A corresponding to $\lambda = 3$.

Example

Given $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of A corresponding to $\lambda = 3$.

$$A\mathbf{x} = A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{x}$$

Exercise

Part 2: Computing Eigenvalue

How to compute eigenvalues?

Example

How to get the value $\lambda = 3$ and the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ from the previous example?

Recall that an eigenvalue λ and an eigenvector \mathbf{x} of A must satisfy

$$A\mathbf{x} = \lambda \mathbf{x}$$

Hence,

$$A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow AI\mathbf{x} = \lambda I\mathbf{x} \Leftrightarrow A\mathbf{x} = \lambda I\mathbf{x} \Leftrightarrow (\lambda I - A)\mathbf{x} = 0$$

Recall that $(\lambda I - A)\mathbf{x} = 0$ has a non-zero solution when

$$\det(\lambda I - A) = 0$$

How to compute eigenvalues?

Theorem (Eigenvalue)

If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if it satisfies the equation:

$$\det(\lambda I - A) = 0$$

This is called the characteristic equation of A.

Example: how to get the eigenvalue?

Given
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
. By the theorem, we solve $\det(\lambda I - A) = 0$, that is:

Example: how to get the eigenvalue?

Given $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. By the theorem, we solve $\det(\lambda I - A) = 0$, that is:

$$\det\left(\lambda\begin{bmatrix}1&0\\0&1\end{bmatrix}-\begin{bmatrix}3&0\\8&-1\end{bmatrix}\right)=0 \;\Leftrightarrow\; \begin{vmatrix}\lambda-3&0\\-8&\lambda+1\end{vmatrix}=0$$

which yields:

$$(\lambda - 3)(\lambda + 1) = 0 \Leftrightarrow \lambda_1 = 3 \text{ and } \lambda_2 = -1$$

This means that the eigenvalues of A are 3 and -1.

Generalization

For a matrix A of size $n \times n$, the charateristic equation $(\lambda I - A)\mathbf{x} = 0$ yields:

$$\lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n = 0 \tag{1}$$

The polynomial: $(\lambda^n + c_1\lambda^{n-1} + \cdots + c_{n-1}\lambda + c_n)$ is called the characteristic polynomial of A.

Example

The characteristic polynomial of $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ is

$$p(\lambda) = (\lambda - 3)(\lambda + 1) = \lambda^2 - 2\lambda - 3$$

Exercise 1: Eigenvalues of a 3×3 matrix

Find the eigenvalues of:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

Solution:

Exercise 1: Eigenvalues of a 3×3 matrix

Find the eigenvalues of:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

Solution:

Compute the characteristic polynomial:

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

The eigenvalues are the solution of:

$$\lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0$$

that is:

$$(\lambda-4)(\lambda^2-4\lambda+1)=0 \Leftrightarrow \lambda_1=4, \ \lambda_2=2+\sqrt{3}, \ \text{and} \ \lambda_3=2-\sqrt{3}$$

Exercise 2: Eigenvalues of an upper triangular matrix

Given:
$$A = \begin{bmatrix} \frac{1}{2} & -1 & 5 \\ 0 & \frac{2}{3} & -8 \\ 0 & 0 & -\frac{1}{4} \end{bmatrix}$$
. Find the eigenvalues of A .

Exercise 3: Eigenvalues of a lower triangular matrix

Given:
$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$$
. Find the eigenvalues of A .

What can you say about the eigenvalues of a triangular matrix?

Find the eigenvalues of:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

What can you say about the eigenvalues of a **triangular matrix**?

Find the eigenvalues of:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

Solution:

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda - a_{11} & -a_{12} & -a_{13} & -a_{14} \\ 0 & \lambda - a_{22} & -a_{23} & -a_{24} \\ 0 & 0 & \lambda - a_{33} & -a_{34} \\ 0 & 0 & 0 & \lambda - a_{44} \end{bmatrix}$$
$$= (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44})$$

Hence the characteristic equation is:

$$(\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44}) = 0$$

that gives
$$\lambda_1 = a_{11}, \ \lambda_2 = a_{22}, \ \lambda_3 = a_{33}, \ \lambda_4 = a_{44}$$

Does it hold for diagonal matrices?

Yes, because a diagonal matrix is a triangular matrix.

Part 3: Computing Eigenvectors

Recap

So far, we have seen...

Theorem

If A is an $n \times n$ matrix, the following statements are equivalent.

- 1. λ is an eigenvalue of A.
- 2. λ is a solution of the characteristic equation det $(\lambda I A) = 0$.
- 3. The system of equations $(\lambda I A)\mathbf{x} = \mathbf{0}$ has nontrivial solutions.
- 4. There is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$.

We have seen 1, 2, and 3. Now we will see that 4 holds.

Finding eigenvectors (1)

By definition, the eigenvectors of A corresponding to an eigenvalue λ are the **nonzero** vectors that satisfy:

$$(\lambda I - A)\mathbf{x} = 0$$

Example

In the previous example, we are given $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ with eigenvalues 3 and -1.

We can compute the eigenvector for each eigenvalue by solving:

- 1. $(3I A)\mathbf{x} = \mathbf{0}$;
- 2. (-I A)x = 0;

Finding eigenvectors (2)

For $\lambda = 3$

$$(3I - A)\mathbf{x} = 0$$

$$\left(\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}\right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ -8x_1 + 4x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Hence, it must be that $-8x_1 + 4x_2 = 0 \Leftrightarrow x_1 = \frac{1}{2}x_2$. The parametric solution is $x_1 = s$, $x_2 = 2s$ with $s \in \mathbb{R} \setminus \{0\}$.

Finding eigenvectors (3)

For $\lambda = -1$

$$(-I - A)\mathbf{x} = 0$$

$$\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}\right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 0 \\ -8 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -4x_1 \\ -8x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Hence, $x_1 = 0$ and $x_2 = t$ with $t \in \mathbb{R} \setminus \{0\}$.

So, can you explain the step-by-step computing the eigenvalues and the eigenvectors?

To compute the **eigenvalues**, we...

To compute the **eigenvectors**, we...

Part 4: Bases for eigenspaces

What is eigenspace?

Note that the eigenvector of A corresponding to λ is the solution of the **linear system**:

$$(\lambda I - A)\mathbf{x} = \mathbf{0}$$

So an eigenvector \mathbf{x} is a nonzero vector in the solution space of the linear system.

The solution space of the linear system $(\lambda I - A)\mathbf{x} = \mathbf{0}$ is called the eigenspace of A.

The eigenspace of A corresponding to λ can be viewed as:

- 1. the null space of the matrix $\lambda I A$;
- 2. the kernel of the matrix operator $T_{(\lambda I-A)}: \mathbb{R}^n \to \mathbb{R}^n$;
- 3. the set of vectors for which $A\mathbf{x} = \lambda \mathbf{x}$

Example: how to find an eigenspace?

Look again at the previous example.

We are given $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ with eigenvalues 3 and -1.

• For $\lambda = 3$, the eigenvectors are determined by:

$$x_1 = s, \ x_2 = 2s \text{ with } s \in \mathbb{R} \setminus \{0\} \text{ or } \mathbf{x}_1 = \begin{bmatrix} s \\ 2s \end{bmatrix} = s \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

• For $\lambda = -1$, the eigenvectors are determined by:

$$x_1=0 \text{ and } x_2=t\in \mathbb{R}\setminus\{0\} \text{ or } \mathbf{x}_2=egin{bmatrix}0\t\end{bmatrix}=tegin{bmatrix}0\t\end{bmatrix}$$

Hence, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is a basis for the eigenspace corresponding to $\lambda=3$, and

 $egin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis for the eigenspace corresponding to $\lambda=-1.$

Exercises

Exercise 1.

Find bases for eigenspaces of the matrix:

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$

Exercise 2.

Find bases for eigenspaces of the matrix:

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Part 5: Eigenvalues and invertibility

Motivating example

Question 1.

We have seen (in the previous example) that the matrix

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
 has eigenvalues 3 and -1 .

Task: Compute det(A).

Question 2.

Given matrix
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
.

Task:

- Compute the eigenvalues of A.
- Compute the determinant of A

So, what can you say about the relation between the determinant of *A* and the eigenvalues of *A*?

to be continued...