Linear Algebra
[KOMS119602] - 2022/2023

13.2 - Eigenvector

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 14 (December 2022)

Learning objectives

After this lecture, you should be able to:

1. explain the concept of eigenvalues and eigenvectors;
2. find the eigenvalues of a matrix;
3. find the eigenvectors of a matrix;
4. find the bases of eigenspace of a matrix.

Motivating example

Part 1: Eigenvectors \& Eigenvalues

What are eigenvectors \& eigenvalues?

Definition

Let A be an $n \times n$ matrix, then a nonzero vector \mathbf{x} in \mathbb{R}^{n} is called an eigenvector of A (or of the matrix operator T_{A}) if $A \mathbf{x}$ is a scalar multiple of \mathbf{x}; that is:

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar $\lambda \in \mathbb{R}$.
λ is called an eigenvalue of A (or of T_{A}), and \mathbf{x} is said eigenvector corresponding to λ.

Geometric interpretation

The eigenvector \mathbf{x} represents:
the column vector in which multiplying it by a square matrix A yields a vector $\lambda \mathbf{x}$ for some $\lambda \in \mathbb{R}$, i.e.
a vector that is a multiplication of \mathbf{x}
(same direction as \mathbf{x} but with different magnitude).

Geometric interpretation

Depending on the sign and magnitude of the eigenvalue λ corresponding to \mathbf{x}, the operation $A \mathbf{x}=\lambda \mathbf{x}$ compresses or stretches x by a factor of λ.

(a) $0 \leq \lambda \leq 1$
(b) $\lambda \geq 1$
(c) $-1 \leq \lambda \leq 0$
(d) $\lambda \leq-1$

Example

Given $A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$. The vector $\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to $\lambda=3$.

Example

Given $A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$. The vector $\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to $\lambda=3$.

$$
A \mathbf{x}=A=\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right]=3 \mathbf{x}
$$

Exercise

Part 2: Computing Eigenvalue

How to compute eigenvalues?

Example

How to get the value $\lambda=3$ and the vector $\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ from the previous example?

Recall that an eigenvalue λ and an eigenvector \mathbf{x} of A must satisfy

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Hence,

$$
A \mathbf{x}=\lambda \mathbf{x} \Leftrightarrow A / \mathbf{x}=\lambda / \mathbf{x} \Leftrightarrow A \mathbf{x}=\lambda / \mathbf{x} \Leftrightarrow(\lambda I-A) \mathbf{x}=0
$$

Recall that $(\lambda I-A) \mathbf{x}=0$ has a non-zero solution when

$$
\operatorname{det}(\lambda I-A)=0
$$

How to compute eigenvalues?

Theorem (Eigenvalue)
If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if it satisfies the equation:

$$
\operatorname{det}(\lambda I-A)=0
$$

This is called the characteristic equation of A.

Example: how to get the eigenvalue?

Given $A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$. By the theorem, we solve $\operatorname{det}(\lambda I-A)=0$, that is:

Example: how to get the eigenvalue?

Given $A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$. By the theorem, we solve $\operatorname{det}(\lambda I-A)=0$, that is:

$$
\operatorname{det}\left(\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right]\right)=0 \Leftrightarrow\left|\begin{array}{cc}
\lambda-3 & 0 \\
-8 & \lambda+1
\end{array}\right|=0
$$

which yields:

$$
(\lambda-3)(\lambda+1)=0 \Leftrightarrow \lambda_{1}=3 \text { and } \lambda_{2}=-1
$$

This means that the eigenvalues of A are 3 and -1 .

Generalization

For a matrix A of size $n \times n$, the charateristic equation $(\lambda I-A) \mathbf{x}=0$ yields:

$$
\begin{equation*}
\lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n}=0 \tag{1}
\end{equation*}
$$

The polynomial: $\left(\lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n}\right)$ is called the characteristic polynomial of A.

Example
The characteristic polynomial of $A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$ is

$$
p(\lambda)=(\lambda-3)(\lambda+1)=\lambda^{2}-2 \lambda-3
$$

Exercise 1: Eigenvalues of a 3×3 matrix

Find the eigenvalues of:

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -17 & 8
\end{array}\right]
$$

Solution:

Exercise 1: Eigenvalues of a 3×3 matrix

Find the eigenvalues of:

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -17 & 8
\end{array}\right]
$$

Solution:

Compute the characteristic polynomial:

$$
\operatorname{det}(\lambda I-A)=\operatorname{det}\left[\begin{array}{ccc}
\lambda & -1 & 0 \\
0 & \lambda & -1 \\
-4 & 17 & \lambda-8
\end{array}\right]=\lambda^{3}-8 \lambda^{2}+17 \lambda-4
$$

The eigenvalues are the solution of:

$$
\lambda^{3}-8 \lambda^{2}+17 \lambda-4=0
$$

that is:

$$
(\lambda-4)\left(\lambda^{2}-4 \lambda+1\right)=0 \Leftrightarrow \lambda_{1}=4, \lambda_{2}=2+\sqrt{3}, \text { and } \lambda_{3}=2-\sqrt{3}
$$

Exercise 2: Eigenvalues of an upper triangular matrix

Given: $A=\left[\begin{array}{ccc}\frac{1}{2} & -1 & 5 \\ 0 & \frac{2}{3} & -8 \\ 0 & 0 & -\frac{1}{4}\end{array}\right]$. Find the eigenvalues of A.

Exercise 3: Eigenvalues of a lower triangular matrix

Given: $A=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4}\end{array}\right]$. Find the eigenvalues of A.

What can you say about the eigenvalues of a triangular matrix?

Find the eigenvalues of:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22} & a_{23} & a_{24} \\
0 & 0 & a_{33} & a_{34} \\
0 & 0 & 0 & a_{44}
\end{array}\right]
$$

What can you say about the eigenvalues of a triangular matrix?
Find the eigenvalues of:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22} & a_{23} & a_{24} \\
0 & 0 & a_{33} & a_{34} \\
0 & 0 & 0 & a_{44}
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\operatorname{det}\left[\begin{array}{cccc}
\lambda-a_{11} & -a_{12} & -a_{13} & -a_{14} \\
0 & \lambda-a_{22} & -a_{23} & -a_{24} \\
0 & 0 & \lambda-a_{33} & -a_{34} \\
0 & 0 & 0 & \lambda-a_{44}
\end{array}\right] \\
& =\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right)\left(\lambda-a_{33}\right)\left(\lambda-a_{44}\right)
\end{aligned}
$$

Hence the characteristic equation is:

$$
\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right)\left(\lambda-a_{33}\right)\left(\lambda-a_{44}\right)=0
$$

that gives $\lambda_{1}=a_{11}, \lambda_{2}=a_{22}, \lambda_{3}=a_{33}, \lambda_{4}=a_{44}$

Does it hold for diagonal matrices?

Yes, because a diagonal matrix is a triangular matrix.

Part 3: Computing Eigenvectors

Recap

So far, we have seen...
Theorem
If A is an $n \times n$ matrix, the following statements are equivalent.

1. λ is an eigenvalue of A.
2. λ is a solution of the characteristic equation $\operatorname{det}(\lambda I-A)=0$.
3. The system of equations $(\lambda I-A) \mathbf{x}=\mathbf{0}$ has nontrivial solutions.
4. There is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$.

We have seen 1, 2, and 3 . Now we will see that 4 holds.

Finding eigenvectors (1)

By definition, the eigenvectors of A corresponding to an eigenvalue λ are the nonzero vectors that satisfy:

$$
(\lambda I-A) \mathbf{x}=0
$$

Example

In the previous example, we are given $A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$ with eigenvalues 3 and -1 .

We can compute the eigenvector for each eigenvalue by solving:

1. $(3 I-A) \mathbf{x}=\mathbf{0}$;
2. $(-I-A) \mathbf{x}=\mathbf{0}$;

Finding eigenvectors (2)

For $\lambda=3$

$$
\begin{aligned}
(3 I-A) \mathbf{x} & =0 \\
\left(\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]-\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right]\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
0 & 0 \\
-8 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{c}
0 \\
-8 x_{1}+4 x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Hence, it must be that $-8 x_{1}+4 x_{2}=0 \Leftrightarrow x_{1}=\frac{1}{2} x_{2}$. The parametric solution is $x_{1}=s, x_{2}=2 s$ with $s \in \mathbb{R} \backslash\{0\}$.

Finding eigenvectors (3)

For $\lambda=-1$

$$
\begin{aligned}
(-I-A) \mathbf{x} & =0 \\
\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]-\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right]\right)\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
-4 & 0 \\
-8 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{l}
-4 x_{1} \\
-8 x_{1}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Hence, $x_{1}=0$ and $x_{2}=t$ with $t \in \mathbb{R} \backslash\{0\}$.

So, can you explain the step-by-step computing the eigenvalues and the eigenvectors?

To compute the eigenvalues, we...

To compute the eigenvectors, we...

Part 4: Bases for eigenspaces

What is eigenspace?

Note that the eigenvector of A corresponding to λ is the solution of the linear system:

$$
(\lambda I-A) \mathbf{x}=\mathbf{0}
$$

So an eigenvector \mathbf{x} is a nonzero vector in the solution space of the linear system.

The solution space of the linear system $(\lambda I-A) \mathbf{x}=\mathbf{0}$ is called the eigenspace of A.

The eigenspace of A corresponding to λ can be viewed as:

1. the null space of the matrix $\lambda I-A$;
2. the kernel of the matrix operator $T_{(\lambda I-A)}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$;
3. the set of vectors for which $A \mathbf{x}=\lambda \mathbf{x}$

Example: how to find an eigenspace?

Look again at the previous example.
We are given $A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$ with eigenvalues 3 and -1 .

- For $\lambda=3$, the eigenvectors are determined by:

$$
x_{1}=s, x_{2}=2 s \text { with } s \in \mathbb{R} \backslash\{0\} \text { or } x_{1}=\left[\begin{array}{c}
s \\
2 s
\end{array}\right]=s\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

- For $\lambda=-1$, the eigenvectors are determined by:

$$
x_{1}=0 \text { and } x_{2}=t \in \mathbb{R} \backslash\{0\} \text { or } \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Hence, $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a basis for the eigenspace corresponding to $\lambda=3$, and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is a basis for the eigenspace corresponding to $\lambda=-1$.

Exercises

Exercise 1.

Find bases for eigenspaces of the matrix:

$$
A=\left[\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right]
$$

Exercise 2.

Find bases for eigenspaces of the matrix:

$$
A=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

Part 5: Eigenvalues and invertibility

Motivating example

Question 1.

We have seen (in the previous example) that the matrix
$A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$ has eigenvalues 3 and -1 .
Task: Compute $\operatorname{det}(A)$.

Question 2.
Given matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$.
Task:

- Compute the eigenvalues of A.
- Compute the determinant of A

So, what can you say about the relation between the determinant of A and the eigenvalues of A ?

to be continued...

